Overview of NIST/ATSC Parser

The NIST (National Institute of Standards and Technology) ATSC (Advanced Television Systems Committee) Parser code is one of the bitstream management tools developed to support the NIST ATSC/DASE (Digital TV Application Software Environment) Prototype Simulation Platform. Its core function is to process ATSC/MPEG-2 Transport Streams, de-multiplex them into individual Elementary Streams, extract and manage the meta-data and pass this information in its original “MPEG table” form to the NIST ATSC/DASE Prototype Simulation Platform. As part of its bitstream management function, the parser filters out duplicate and erroneous data. Thus the Prototype Simulation Platform only receives new table versions, which greatly reduces its input data traffic. The parser also separates out audio and video streams, as well as PCR information, for optional separate decoding or processing. In addition, there is an optional back channel from the Prototype Simulation Platform to the parser that supports an interactive protocol to handle low level simulation functions such as channel change and stream redirection and flow management. The format between the Prototype Simulation Platform and parser is NIST specific and is the same as the format used by the NIST Bitstream Feeder tool, which supplies similar, but static, MPEG/ATSC table meta-data to the Simulation Platform.

This NIST/ATSC Parser, like the NIST/ATSC Prototype Simulation Platform and the ATSC/DASE specification, is still under development and subject to changes.

A summary description of current back-channel protocol between the Prototype Simulation Platform and the parser follows. Each back channel command from the Prototype Simulation Platform to the parser is a single string of ASCII characters terminated by either the '\n' or '\0' characters. Each field in a command is separated by white space. Most commands have 2 fields, the CMD (a numerical value) and a qualifying field (qual #1 - mostly a numerical value, but can contain ASCII symbols '+' and '-'), the open command has a 3rd field (qual #2, which is a string). The parser provides an ACK or a NACK to the Simulation to signal the result of the request and to also provide synchronization of the action.

 Table Summary of current back-channel protocol from Prototype Simulation Platform:

	CMD Description
	CMD
	qual #1
	qual #2

	Change_Channel
	1
	Number/string
	-

	Open
	2
	PID
	device_name

	Start
	3
	PID
	

	Stop
	4
	PID
	

	Close
	5
	PID
	

The Change_Channel command is:

 1 #

where # is the new channel number or the '+' character for "next channel up" or '-' character for "next channel down". The Change_Channel command to the parser does the following functions:

 - delete all the dynamic PSIP tables & free their storage

 - clear input Transport Stream buffers

 - set the new "channel #"

 - simulate new channel via recycle input stream file (go to beginning of current input file)

The Open command, opens the device specified in the command and begins sending an elementary MPEG-2 stream, identified by a PID, to it

 2 PID dev_name

where PID is the PID_number of the stream to be sent to "dev_name"

The Start command, begins sending an elementary MPEG-2 stream, identified by a PID, to its previously assigned device:

 3 PID

where PID is the PID_number of the stream to be sent (the device was originally assigned via the Open command). If the stream is already being sent, no change occurs. Note: Open does both a device assignment and a start.

The Stop command, pauses an elementary MPEG-2 stream, identified by its PID, that is being sent to its previously assigned device

 4 PID

where PID is the PID_number of the stream to be stopped. The device was originally assigned via an Open command. If the stream is already stopped or not selected at all, no change occurs

The Close command, stops an elementary MPEG-2 stream, identified by its PID, from being sent and remove it from its assigned device

 5 PID

where PID is the PID_number of the stream to be closed. The device was originally assigned via Open command. The device assignment is terminated and if no other PID is assigned to that device, it is closed. Multiple streams may be assigned to a single device.

Running and Compiling the NIST/ATSC Parser

The NIST/ATSC parser is written in C and compiles and runs successfully under Unix and Linux. The parser is packaged as three files, one .c file (rt_atsc_parser.c) and two .h files (rt_parser.h and huffman_tables.h). Compile under either of these environments as:

cc –o rt_atsc_parser rt_atsc_parser.c

It has also compiled and run under Windows using the Gcc compiler which has ported the Unix C library functions. To run under Windows, in addition to the Gcc compiler, requires a small modification to the code. One must add the option O_BINARY to the open() and fopen() calls. Compile under this environment as:

Gcc –o rt_atsc_parser rt_atsc_parser.c

The general command line invocation for the parser is:

parser [-is <input_stream_dev>] [-if <input_fifo_from_api_dev>]

 [-of <output_fifo_to_api_dev>] [-oa <output_audio_dev>]

 [-ot <output_time_dev>] [-ov <output_video_dev>]

 [-nr] [-ha] [-hv]

where:

 [-is] ==> specifies a file or device which is the source of the input bitstream Since the bitstream is the minimum necessary input it must either be explicitly specified via this command line option or supplied via redirection to standard input.

 [-if] ==> specifies a file or FIFO interface from the Prototype Simulation Platform to the parser.

 [-of] ==> specifies a file or FIFO interface to the Prototype Simulation Platform from the parser.

[-oa] ==> specifies a file or device to send the Audio PES stream to.

[-ot] ==> specifies a file or device to send the PCR information to.

[-ov] ==> specifies a file or device to send the Video PES stream to.

[-nr] ==> don't_rate_limit_input_stream – the default is to rate-limit the input bitstream by delaying the reading of the next 188 byte MPEG-2 Transport Stream packet until the next allowable time interval (approximately 75 us between packets).

[-ha] ==> output only PES headers for Audio – the default is discard PES Audio packets and output nothing.

[-hv] ==> output only PES headers for Video Audio – the default is discard PES Video packets and output nothing.

As a stand-alone tool the parser can be used as a bitstream viewing tool. Its input is an MPEG-2 Transport Stream and its output is a debug/summary stream of new meta-data (new table versions) to standard output. The following command lines would invoke the parser in this mode:

parser -is <input_stream_dev>

or

parser < input_stream_dev

The level of output detail can be controlled via a number “#define”s located near he beginning of the .c source code file. The current code is configured to output only an summary level of information via the statement

#define DEBUG_SUMMARY 1

whereas another level of messages has been disabled via the statement

/*

#define DEBUG_RCV 1 /* */

This statement could be enabled, by adding an “end comment symbol” on the 1st line resulting in the following

/* */

#define DEBUG_RCV 1 /* */

Other changes, such as deleting the line above the #define (containing the “start comment symbol”), would have a similar effect. Any such changes require recompilation of the code.

To use the parser as part of the Prototype Simulation Platform in a one-way mode, providing bitstream information but no back channel from the Simulation,. the following command lines could be used:

parser -is <input_stream_dev> -of <output_fifo_to_api_dev>

or

parser < input_stream_dev -of <output_fifo_to_api_dev>

To use the parser as part of the Prototype Simulation Platform in a two-way mode, providing bitstream information and a back channel from the Simulation,. the following command lines could be used:

 parser -is <input_stream_dev> -of <output_fifo_to_api_dev> -if <input_fifo_from_api_dev>

or

 parser < input_stream_dev -of <output_fifo_to_api_dev> -if <input_fifo_from_api_dev>

Other command line variations are possible, but the above is a quick summary of the predominate ones expected.

Overview of NIST/ATSC Parser Structure

The operational sequence of the parser program is summarized by the following pseudo code:

Initialization

Process Command Line parameters

Loop Forever

IF FIFO from Prototype Simulation exists

IF there is data to process

Process Simulation command

Send response to Simulation

IF rate_limit enabled

Wait until next packet time

READ the next MPEG-2 packet

Process MPEG-2 header and get payload

Extract PID and use it to demultiplex the streams

IF a PES stream

Send to assigned device or discard

ELSE IF known meta-data stream

Process stream

IF complete “table”

IF CRC or CHKSUM error

Discard “table”

ELSE

IF new “table” version

Process new meta-data

IF Simulation FIFO specified

SEND “table” to Simulation

IF “#define” enabled

Output various levels of information

ELSE

Discard duplicate data

ELSE unknown stream

Discard unknown data

REPEAT Loop

